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1. Intrduction and main results 
 
          A convex and continuous function   [ ) [ ): 0, 0,M ∞ → ∞  for which 

( )0 0,M =   ( ) 0M x >  for 0x >  i 

( )
0

lim 0,
x

M x
x→

=   ( )lim
x

M x
x→∞

= ∞  

İs called a Young function. The complementary Young function  N  of M  is 
defined by  

( ) ( )( )
0

: max ,
x

N y xy M x
≥

= −  0.y ≥  

       Let  T  denote the interval  [ ], ,π π− �  the complex plane , and   

( ) , 1pL T p≤ ≤ ∞ , the Lebesgue space of measurable complex-valued functions 
on  T . 
         For a given Young function M  let � ( )ML T  denote the set of all Lebesgue 
measurable functions :f T → �  for which  

( )
T

M f x dx  < ∞ ∫ . 
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          Let N  be the complementary Young  function of M .  It is well-known [26, 
p. 69], [39, pp. 52-68] that the linear span of � ( )ML T  equipped with the Orlicz 
norm  

( ) ( ) ( ) � ( ) ( )( ): sup : , 1
M

NL T
T T

f f x g x dx g L T N g x dx
 

= ∈ ≤ 
 
∫ ∫ , 

or with the Luxemburg norm 

( )
( )* : inf 0 : 1

ML T
T

f x
f k M dx

k

   = > ≤      
∫  

becomes a Banach space. The space is denoted by ( )ML T and is called an Orlicz 
space [24,  p.26]. The Orlicz spaces are known as the generalizations of the 
Lebesgue spaces ( ) , 1pL T p< < ∞ .  If ( ) ( ): , , 1 ,pM x M x p x p= = < < ∞

then Orlicz spaces ( )ML T coindices with the usual Lebesgue spaces 

( ) , 1pL T p< < ∞ . Note that the Orlicz spaces play an important role in many 
areas such as applied mathematics, mechanics, regularirty theory, fluid dynamics 
and statistical physics. Therefore, the approximation of the functions by means of 
Fourier trigonıometric series in Orlicz spaceas is also important in these areas of 
research. 
        The  Luxemburg norm is equivalent to the Orlicz norm and equivalence  

( ) ( ) ( ) ( )* *2 ,
M M M

ML T L T L T
f f f f L T≤ ≤ ∈  

 holds true [24, p.80 ].  
         If  we choose 𝑀𝑀(𝑢𝑢) = 𝑢𝑢𝑝𝑝

𝑝𝑝
 , 1 < 𝑝𝑝 < ∞   then the complementary function is  

𝑁𝑁(𝑢𝑢) = 𝑢𝑢𝑞𝑞

𝑞𝑞
  with  1

𝑝𝑝
+ 1

𝑞𝑞
= 1  and we have the relation  

( ) ( ) ( ) ( )

1 1*

p M M p

p q
L T L T L T L T

p u u u q u
−

= ≤ ≤ ,  

where  ( ) ( )
1

p

p
p

L T
T

u u x dx
 

=  
 
∫  stands for the usual norm of the  ( )pL T  space. 

      If  N  is complementary to  M  in Young’s sense and 
( ) ( ),M Nf L T g L T∈ ∈ then the so-called strong Hölder inequalities [26, p. 80]  

( ) ( ) ( ) ( )
* ,

M NL T L T
T

f x g x dx f g≤∫  

( ) ( ) ( ) ( )
* ,

M NL T L T
T

f x g x dx f g≤∫  
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are satisfied. 
An N function M  satisfies the 2∆ -condition if  

( )
( )
2

lim sup
x

M x
M x→∞

< ∞  . 

The Orlicz space ( )ML T  is reflexive if and only if the N  - function M  and its 

complementary function N  both satisfy the 2∆ -condition [39, p.113]. Furter 
information about Orlicz spaces may be found in [26] and [39].  
           Let [ ) [ )1 : 0, 0,M − ∞ → ∞  be the inverse function of the N function M . 

The lower and upper indices Mα ,  Mβ  [7, p.350]  

( )
0

log
: lim ,

logM x

h x
x

α
→

=    
( )log

: lim
logM x

h x
x

β
→∞

=  

of the function  

( ) ( ]: 0, 0, ,h ∞ → ∞  ( ) ( )1

1
: limsup

t

M t
h x

tM
x

−

→∞ −

=
 
 
 

,  0x >  

firs considered by W. Matuszewska ve W. Orlicz [32], are called the Boyd indices 
of the Orlicz space ( )ML T . It is known that  

0 1M Mα β≤ ≤ ≤  
and 

1,N Mα β+ =   1.M Nα β+ =  
        The Boyd indices ,Mα  Mβ   are called nontrivial if 0 Mα<  and  1Mβ <  . 

The Orlicz space ( )ML T  is reflexive if and only if 0 1M Mα β< ≤ < , i.e. if the 
Boyd indices are nontrivial. The detailed information about Boyd indices can be 
found in [4-10],  [27] and [36]. 
       A measurable function  [ ]: 0,Tω → ∞  is called a weight function if the set  

{ }( )1 0,ω− ∞ has Lebesgue measure zero. With any given weight ω  we associate 

the  ω -weight Orlicz space ( ),ML T ω  consisting of all measurable function f  on 
T  such that 

( ) ( ),
:

M L TM
L T

f f
ω

ω= . 

 Note that if ( )ML Tω∈  and 1 ( )NL Tω∈  then from Hölder inequality we have 

( ) ( ) ( )1,ML T L T L Tω∞ ⊂ ⊂ . 

151 
 



PROCEEDINGS OF  IAM, V.10, N.2, 2021 
 

           Let 1 < 𝑝𝑝 < ∞ ,  1
𝑝𝑝

+ 1
𝑝𝑝′

  and let ω  be a weight function on T . ω  is said to 

satisfy Muckenhoupt’s pA - condition on T if  

( ) ( )
1 1

1 1sup ,
p p

p p
J

J J

t dt t dt
J J

ω ω
′

′−   
< ∞      

   
∫ ∫  

where J  is any subinterval of T  and J  denotes its length [33]. 

           Let us indicate by ( )pA T  the set of all weight functions satisfying 

Muckenhoupt’s pA - condition on T .  

 According to [28, Lemma 3.3], [27, Theorem 4.5], [30, Section 2.5], if  ( )ML T  is 
reflexive and ω weight function satisfying the condition 

( ) ( )1 1
M M

A T A T
α β

ω∈ ∩ , then the space ( ),ML T ω  is also reflexive. 

            Let ( ),ML T ω  be a weighted Orlicz space with Boyd indices 

0 1M Mα β< ≤ < , and let ( ) ( )1 1
M M

A T A T
α β

ω∈ ∩ . For a given ( ),Mf L T ω∈ , 

the shift operatör hs  is defined by 

( )( ) ( )1: , 0 ,
2

h

h
h

s f x f x t dt h x T
h

π
−

= + < < ∈∫ . 

We define k -modulus of smoothness for  ( ),Mf L T ω∈  as 

( ) ( )
( )

, 10
1 ,

, : sup , 0,
i

i

M

k
k
M hih

i k L T

f I sω
δ

ω

δ δ
=< ≤

≤ ≤

Ω = Π − >  

where  I  is the identity operatör. Note that this modulus of smoothness is well 
defined, because  hs  is a bounded linear operatör on ( ),ML T ω  [20]. 

 It is easily verified that the function ( ), ,k
M fωΩ ⋅ is continuous, non-negative and 

satisfy 
( ) ( ) ( ) ( ), , , ,0

lim , 0, , , ,k k k k
M M M Mf f g f gω ω ω ωδ→

Ω ⋅ = Ω ⋅ + ≤ Ω ⋅ +Ω ⋅  

for  ( ), ,Mf g L T ω∈ . 
       Let  

                                ( ) ( )( )0

1
cos sin

2 k k
k

a a f kx b f kx
∞

=

+ +∑                           (1.1) 
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 be the Fourier series of the function  ( )1 ,f L T ω∈ , where ( )ka f  and ( )kb f  are 

the Fourier coefficiets of the function of f .  For ( ),Mf L T ω∈  we define the 

summability method by the tringular matrix { } ,

, , 0

j

i j i j
λ

∞

=
Λ =  by the linear means , 

( ) ( ) ( )( )0
0 ,

1
, cos sin

2

n

n n i i i
ı

aU x f a f ix b f ixλ λ
=

= + +∑ . 

If the Fourier series of is given by (1.1). then Zygmund-Riesz means of order k  is 
defined as  

( )
( )

( ) ( )( )0
,

1
, 1 cos sin

2 1

kn
k
n i ik

ı

a iZ x f a f ix b f ix
n=

 
= + − + 

 + 
∑ . 

          We denote by ( ) ( ),
, 0,1, 2,...n M

E f n
ω

=  the best approximation of 

( ),f L T ω∈  by trigonometric polynomials of degree not exceeding n , i.e., 

           ( ) ( ){ }, ,
: inf : ,

M
n n n nM L T

E f f T T
ω ω
= − ∈Π  

where nΠ  denotes the class of trigonometric polynomials of degree at most n . 

Note that the existence of *
n nT ∈Π  such that  

 
( )

( )
*

, ,M
n nM L T

E f f T
ω ω
= −  

follows, for example, from Theorem 1.1 in [14, p.59]. 
Let n nT ∈Π  and  

( )0

1
cos sin

2

n

n i i
i

cT c ix d ix
=

= + +∑ . 

Then conjugate polynomial �nT  is defined by  

� ( )
1

sin cos
n

n i i
i

T c ix d ix
=

= −∑ . 

          In this paper we use the constants 1 2, , ,...c c c (in general, different in 
different relations) which depend only on the quantities that are not important fort 
the questiones of interest. 
           We will say that the method of summability by the matrix condition Λ  
satisfies condition ,k Mb  (respectively *

,k Mb  ) if for n nT ∈Π  the inequality  
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( ) ( ) ( ) ( )
( )

( ) ( ) ( ) � ( )

( )

, ,

, ,

1

1

M M

M
M

k k
n n n nL T L T

kk
nn n n L T L T

T U T c n T

T U T c n T

ω ω

ω ω

−

−

− ≤ +

 
− ≤ + 

 

 

holds and the norms  
2

0,
,1

10

: cos
2

n
n

i n
i

it dt
π λ

λ
=

Λ = +∑∫  

are bounded . 
         The problems  problems of approximation theory in the  weighted and non-
weighted Orlicz spaces have been investigated by several authors ( see, for 
example. [1-3 , 15, 18, 20, 22, 24,  38]. 
          In the present paper necessary ant sufficient condition abouıt the relationship 
between the approximation of the functions by linear means of Fourier series and 
by Zygmund-Riesz means of order k  was investigated in weighted Orlicz spaces. 
Also, we investigate the approximation of functions by linear means of  Fourier 
series in terms of the modulus of smoothness of these functions in weighted Orlicz 
spaces. This result was applied to the approximation of the functions by linear 
means of  Faber series in weifhted Smirnov-Orlicz classes defined on simply 
connected domain of the complex plane. The similar problems in different spaces 
were investigated in [11, 12,  21, 23, 25,  32, 33, 41, 42 ] 
         Main results in the present work are the following theorems: 
          Theorem 1.1. Let ( ),ML T ω  be a weighed Orlicz spaces with Boyd indices 

1 1,M Mα β< ≤ < and let 1 1 .
M M

A A
α β

ω∈ ∩ In order that for ( ),Mf L T ω∈  

   ( ) ( ) ( ) ( ) ( )
( ),

1,
, ,

M L TM

k
n nL T

f U f c f Z f
ωω

⋅ − ⋅ ≤ ⋅ − ⋅                               (1.2) 

it is sufficient and necessary that for ( ),Mf L T ω∈  

     ( ) ( ) ( ) ( ) ( )
( ),

2,
, , .

M L TM

k
n n n n nL T

T U f c T Z T
ωω

⋅ − ⋅ ≤ ⋅ − ⋅                    (1.3) 

  Theorem 1.2. Let ( ),ML T ω  be a weighed Orlicz spaces with Boyd indices 

1 1,M Mα β< ≤ < and let 1 1 .
M M

A A
α β

ω∈ ∩  In order that for every ( ),Mf L T ω∈  

       ( ) ( ) ( ) ( ) ( )
( ),

3,
, ,

M L TM

k
n nL T

f U f c f Z f
ωω

⋅ − ⋅ ≤ ⋅ − ⋅                      (1.4) 

it is sufficient and necessary that  
( ) ( ) ( ) ( )

,
, 1 ;

M
n L T

i U f O
ω

⋅ =  
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( )ii  if k  is even, ( ),nU f⋅  satisfies the condition ( ),k Mb ; if k is odd ( ),nU f⋅

satisfies the condition ( )*
,k Mb . 

          Theorem 1.3.  Let ( ),ML T ω  be a weighed Orlicz spaces with Boyd indices 

1 1,M Mα β< ≤ < and let 1 1 .
M M

A A
α β

ω∈ ∩  If the summability method with the 

matrix  Λ  satisfies the condition ( ),k Mb  or *
,k Mb , then for ( ),Mf L T ω∈  the 

inequality  

           ( ) ( ) ( ) 4 ,,

1, ,
1M

k
n ML T

f U f c f
nωω

 ⋅ − ⋅ ≤ Ω  + 
                       (1.5) 

holds with a constant 4 0c >  independent of n . 

            Theorem 1.4.   Let ( ),ML T ω  be a weighed Orlicz spaces with Boyd 

indices 1 1,M Mα β< ≤ < and let 1 1 .
M M

A A
α β

ω∈ ∩  If the summability method 

with the matrix  Λ  satisfies the condition ( ),k Mb  or ( )*
,k Mb , then for 

( ),Mf L T ω∈   

                            ( )( ) ( ), 5 ,, , ,k k
M n MU f c fω ωδ δΩ ⋅ ≤ Ω                                      (1:6) 

where the constant 5 0c >  does not depend on n , f  and δ . 
             Corollary 1.1. These results obtained in Theorems 1.1 and 1.3 are valid 
Zygmund- Riesz means of order k . 
             Let G  be a finite domain in the complex plane � , bounded by a 
rectifiable Jordan curve  Γ , and let :G ext− = Γ . Further let  

{ }. : 1 , : intT w w D T= ∈ = =�  and :D extT− = . 

              Let ( )w zφ= be the conformal mapping of G−  onto D−   normalized by  

( ) ( ), lim 0,
z

z
z

φ
φ

→∞
∞ = ∞ >  

and let ψ denote the inverse of φ . 

             Let ( )1 zω φ= denote a function that maps the domain G  conformaly onto 

the disk 1w < . The inverse mapping of 1φ  wil be denoted by  1ψ . Let rΓ denote 

circular images in the domain G , that is, curves in G  corresponding to circle 
( )1 z rφ =  under the mapping ( )1z wψ= . 
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             Let us denote by ( )pE G , where 0p > , the class of al functions 

( ) 0f z ≠  which are analytic in G  and have the property that the integral  

( )
r

p
f z dz

Γ
∫  

İs bounded for 0 1r< < . We shall call the ( )pE G -class the Smirnov class. Ever 

function in ( ) , 1pE G p≤ < ∞ , has the non-tangential boundary valurs almost 
everywhere (a.e.) on Γ  and the boundary function belongs to Lebesgue space 

( )pL Γ  [16, p.438]. It is known that ( )1E Gφ −′ ∈  and ( )1E Dψ −′ ∈ . Note that 
the general information about Smirnov classes can be found in the books [13, 
pp.168-185] and [16, pp.438-453]. 
             We define also the ω -weighted Smirnow-Orlicz class ( ),ME G ω as 

( ) ( ) ( ){ }1, : : ,M ME G f E G f Lω ω= ∈ ∈ Γ . 

Note that the weighted Smirnov-Orlicz class ( ),ME G ω  is a generalization of the 

Smirnov class ( )pE G . In particular, If ( ) , 1pM x x p= < < ∞ , then the 

weighted Smirnov-Orlicz class ( ),ME G ω  coincides with the weighted Smirnov 

class ( ),pE G ω ; if 1ω = , then ( ),ME G ω coincides with the Smirnov-Orlicz 

class ( )ME G , defined in [31]. 

With every weight function ω  on Γ ,  we associate another weight 0ω on T  
defined by  

( ) ( )( )0 : ,t t t Tω ω ψ= ∈ . 

For ( ),Mf L ω∈ Γ we define the function  

( ) ( )( )0 : ,f t f t t Tψ= ∈ . 

           Let h  be continuous function on [ ]0,2π . Its modulus of continuity is 
defined by  

( ) ( ) ( ) [ ]{ }1 2 1 2 1 2, : sup : , 0, 2 , , 0t h h t h t t t t t t tω π= − ∈ − ≤ ≥ . 

The curve Γ is called Dini-smooth if it has a parameterization  
( )0: , 0 2s sϕ πΓ ≤ ≤  

such that ( )0 sϕ′ is Dini-continuous,i.e. 
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( )0

0

,t
dt

t

π ω ϕ′
< ∞∫  

and ( )0 0sϕ′ ≠ [37,  p. 48]. 

 If Γ  is Dini -smooth curve, then there exist the constants 6c  and 7c  such that [41] 

        ( )6 70 , 1c t c tψ ′≤ ≤ ≤ < ∞ >   .                                       (1.7) 

Note that If Γ  is Dini -smooth curve, then by (1.7)  we have ( )0 0,Mf L T ω∈  and 

( ),Mf L ω∈ Γ . 

          Let Γ be a rectifiable Jordan curve and ( )1 .f L∈ Γ Then the function f +

defined by  

( ) ( )1: ,
2

f s
f z ds z G

i s zπ
+

Γ

= ∈
−∫  

İs analytic in G . Note that İf ( ) ( )1 10 , 1,
M M

M M A A
α β

α β ω< < ∈ Γ ∩ Γ  and 

( ),Mf L ω∈ Γ , then according to [16] ( ),Mf E G ω+ ∈ . 

          Let ( ) , 0,1, 2,...k z kφ = be the Faber polynomials for G . The Faber 

polynomials ( ) ,k zφ associated with G∪Γ , are defined through the expansion 

       
( )

( )
( )

1
0

, ,k
k

k

t z
z G t D

t z t
ψ φ

ψ

∞
−

+
=

′
= ∈ ∈

− ∑                           (1.8) 

and the equalities  

                ( ) ( )
( )

1 , ,
2

k

k
T

t t
z dt z G

i t z
ψ

φ
π ψ

′
= ∈

−∫                                      (1.9) 

( ) ( ) ( )1 ,
2

k
k

k
T

s
z z dt z G

i s z
φ

φ φ
π

−= + ∈
−∫  

hold [ 40, pp. 33-48]. 
          Let ( ),Mf E G ω∈ . Since ( )1f E G∈  we obtain  

( ) ( ) ( )( ) ( )
( )

1 1
2 2 T

f t tf s ds
f z dt

i s z i t z
ψ ψ

π π ψΓ

′
= =

− −∫ ∫  

for every z G∈ . Conssidering this formula and expansion (1.8) , we can associate 
with f  the formal series  
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                   ( ) ( ) ( )
0

,i i
i

f z a f z z Gφ
∞

=

∈∑�                           (1.10) 

where  

           ( ) ( )( )
1

1: , 0,1, 2,...
2i i

T

f t
a f dt i

i t
ψ

π += =∫  

This series is called the Faber series expansion of f , and the coefficients ( )ia f  
are said to be the Faber coefficients of f . 

           Let (1.10) be the Faber series of the function ( ),Mf E G ω∈ . Fort he 
function f  we define the summability method by the tringular matrix  

{ } ,

, , 0

j

i j i j
λ

∞

=
Λ =  by the linear means 

( ) ( ) ( ),
0

,
n

n i n i i
i

U z f a f zλ φ
=

=∑ . 

The n -th partial sums and Zygmund means of order k  of the series  (1.10) are 
defined respectively, as 

( ) ( ) ( )

( )
( )

( ) ( )

0

0

, ,

, 1 .
1

n

n k k
k

kn
k
n k ik

i

S z f a f z

iZ z f a f z
n

φ

φ

=

=

=

 
= − 

 + 

∑

∑
 

              Let Γ  be a Dini-smooth curve. Using the nontangential boandary values 
of 0f

+ on T we define the k -th modulus of smoothness of ( ),Mf L ω∈ Γ as  

( ) ( )
0, , , 0, : , , 0k k

M Mf fω ωδ δ δ+
ΓΩ = Ω >      for 1, 2,3,...k =  

            The following theorem holds. 
             Theorem 1.5. Let Γ be a Dini-smoth curve, and let ( )ML Γ  be a reflexive 

Orlicz space, and let 1 1 .
M M

A A
α β

ω∈ ∩  If the summability method with the 

matrix Λ  satisfies the condition ( ),k Mb  or ( )*
,k Mb , then for ( ),Mf E G ω∈ the 

estimate  

  ( ) ( ) ( ) 8 , ,,

1, ,
1M

k
n ML

f U f c f
nωω ΓΓ

 ⋅ − ⋅ ≤ Ω  + 
                                     (1.11) 

holds with a constant 8 0c > , independent of n . 
        
          2.  Some auxiliary results 
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           Let ℘ be the set of all algebraic polynomials (with no restriction on the 

degree), and let ( )D℘ be the set of traces of members of ℘ on D . We define the 
operatör  

( ) ( ): ,MA D E G ω℘ →  
as 

( )( ) ( ) ( )1: ,
2 T

P w w
A P z dw z G

i w z
ψ

π
′

= ∈
−∫ . 

Then it is clear that by  (1.9) we get  

( )
0 0

n n
k

k k k
k k

A w zβ β φ
= =

  = 
 
∑ ∑ . 

            The following results hold for the linear operator A  [18]. 
             Theorem 2.1. If Γ is a Dini-smoth curve,  0 , 1,M Mα β< < and 

( ) ( )1 1
M M

A A
α β

ω∈ Γ ∩ Γ . Then linear operator ( ) ( ): ,MA D E G ω℘ →  is 

bounded. 
             Theorem 2.2. If Γ is a Dini-smoth curve,  0 , 1,M Mα β< < and 

( ) ( )1 1
M M

A A
α β

ω∈ Γ ∩ Γ . Then linear operator ( ) ( )0: , ,M MA E D E Gω ω→  is  

one-to-one and onto. 
 
               3. Proofs of the main results 
 
                Proof of Theorem 1.1. Necessity. It is clear that the inequality (1.3) 
follows from the inequality (1.2 ).  
                Sufficienty. Let ( ),Mf L ω∈ Γ  and let ( )0,1,2,...n nT n∈Π =  be the 
polynomial of best approximation to f . We obtain 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

( )
( )( )

( ) ( ) ( )
( )

( )

( )

,

, , ,

9 10 11, , ,,

12 , , ,

13 14 15 16 17, , ,,

18 1,

,

, ,

,

, ,

,

M

M M M

M

M M M

M

n L T

n n n n nL T L T L T

k
n n n n n nM M ML T

k k
n n n nL T L T L T

k
n n n nM M ML T

n M

f U f

f T T U f U f T

E f c T Z T c E f c E f

c T f f Z f Z f T

c E f c E f c f Z f c c E f
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ω

ω ω ω

ω ω ωω

ω ω ω

ω ω ωω
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− ⋅

≤ − − − ⋅ + ⋅ −

≤ + − ⋅ + ≤

+ − + − ⋅ + ⋅ −
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M M

k k
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and Theorem 1.1 is proved. 
            Proof of Theorem 1.2. Necessity.  Let 1 q p< < < ∞ . According to [42]  

( ),k
nZ f⋅  is bounded in the Lebesgue spaces ( )pL T  and ( )qL T . Then by [20, 

Theorem 7 and Lemma 1]  ( )
( )

( )
,

, 1
M

k
n L T

Z f O
ω

⋅ = . Taking account of (1.4) we 

have ( ) ( ) ( )
,

, 1
M

n L T
U f O

ω
⋅ = . Let ( ),Mf L T ω∈ . Then the following inequality 

holds : 

                          

( )
( )

( ) ( ) ( ) ( )
( )

( )

,

,

,
1

1 2

,

, 1 ,

.

M

M
L TM

k
n L T

n
k k

L T

k

f Z f

f S f n A f

U U
ω

ω

nω
n

n−

=

− ⋅

≤ − ⋅ + + ⋅

= +

∑            (2.1) 

It is will known from  [20] that 

          
( ) ( ) ( )

( ) ( )
( )

1 21 ,,

22 ,

,

1 .
M

M

n ML T

k k

L T

U f S f c E f

c n f

ωω

ω

−

= − ⋅ ≤

≤ +
                          (2.2) 

We note that if k  is even  

( ) ( ) ( ) ( )2

1
, 1 , ,

n k kk
nA x f S x fn

n

n
=

= −∑  

if k  is odd 

( ) ( )
( )

� ( ) ( )
3

2

1
, 1 , ,

n k kk
nA x f S x fn

n

n
+

=

= −∑  

where ( )�g x  is the function that is trigonometricaly  conjugate to ( )�g x . Then  

    ( )
( ) ( ) ( )

( )

( ) � ( ) ( )
( )

,

2

,

1 , ,

1 , , .

M

M

k k
n L T

k
kk

n
L T

n S f k even
U

n S f k odd

ω

ω

−

−

 + ⋅ −


= 
+ ⋅ −



                             (2.3) 

     Using (2.3)  and [20], if  k  is even we have  

                

( ) ( ) ( ) ( )
( )

( ) ( )
( )

2 ,

23 ,

1 ,

1 ,
k

M

kk k
n L T

k k

L T

U n S f

c n f

ω

ω

−

−

= + ⋅

≤ +
                               (2.4) 
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if  k  is odd, we find that  

             

( ) ( ) � ( ) ( )
( )

( ) � ( )

( )

2
,

24
,

1 ,

1 .

k

M

kkk
n

L T

kk

L T

U n S f

c n f

ω

ω

−

−

= + ⋅

≤ +
                                     (2.5) 

Taking into account the relations (2.1), (2.2 ), (2.2 ), and (2.5), if k  is even for 
( ),Mf L T ω∈  and ( ) ( ),k

Mf L T ω∈  we obtain the inequality  
( ) ( )

( )
( ) ( )

25,
, 1

M

kk k
n L T

f Z f c n f
ω

−− ⋅ ≤ +  

and if k  is odd for ( ),Mf L T ω∈  and �
( ) ( ),
k

Mf L T ω∈  we reach  

( ) ( )
( )

( ) � ( )
26,

, 1 .
M

kkk
n L T

f Z f c n f
ω

−− ⋅ ≤ +  

            Sufficienty. We note that for n nT ∈Π  we get  

    ( ) ( )
( )

( ) ( )
( ), ,

, 1 ,
M M

kk k
n n n nL T L T

T Z T n T
ω ω

−− ⋅ ≤ + if k  is even,       (2.6) 

      ( ) ( )
( )

( ) � ( )

( ), ,
, 1 ,

M M

kkk
nn n n L T L T

T Z T n T
ω ω

−− ⋅ ≤ + if k  is odd.         (2.7) 

Use of ( 2.6), ( 2.7) and condition ( )ii  gives us  

( ) ( )
( ) ( )

( )27, ,
, , .

M M

k
n n n n n nL T L T

T U T c T Z T
ω ω

− ⋅ ≤ − ⋅  

The last inequality and Theorem 1.1 imply that (1.4 ). Theorem 1.2 is completely 
proved. 
           Proof of Theorem 1.3.  We suppose that the condition ( )*

,k Mb  is satisfied. 

Let ( ),Mf L T ω∈  and n nT ∈Π  be the polynomial of best approximation to f . 

Note that ( ) *nU f f= Λ . Then if 1 q p< < < ∞  the operatör ( )nU f  is 

bounded in the Lebesgue spaces ( )pL T  and ( )qL T  [42 ]. Using the method of 

proof of  Lemma 1 in [20] we can show that the operatör  ( )nU f  is bounded in 

( ), ,ML T ω i.e. ( ) ( ) ( ),
28, L TM M

n L T
U f c f

ωω
≤ . Then we get  
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) � ( )
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( ) � ( )
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, , ,

29 30 31, ,
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32 33,
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M M M
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n L T

n n n n n nL T L T L T
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nn nM M

L T
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nn M
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f U f

f T T U f U T U f

c E f c E f c n T

c E f c n T

ω

ω ω ω

ω ω
ω

ω
ω

−

−

− ⋅

≤ − − − ⋅ + ⋅ − ⋅

≤ + +

≤ +

   (2.8) 

Taking the Bernstein inequality  and the boundedness of the linear operatör 
�f f→  in ( ),ML T ω  into account [20,  Lemma 3 and relation (15)]   we have  

              

� ( )

( )

( )
( )34 ,,

35 ,
1 , .

1

MM

k kk k
n n L TL T

k
M

n T c n T

c f
n

ωω

ω

− −≤

 ≤ Ω  + 
                             (2.9) 

           Note that according to the direct theorem of approximation in ( ),ML T ω  
given in [20]  following inequality holds: 

( ) ,n M
E f

ω
≤ 36 ,

1 , .
1

k
Mc f

nω
 Ω  + 

 

Taking into account the relations ( ), ( ) and ( ) we have  
                                                       

 ( ) ( ) 37 ,,

1, , . (2.10)
1M

k
n ML T

f U f c f
nωω

 − ⋅ ≤ Ω  +           

If the summability method with the matrix Λ  satisfies condition ( )*
,k Mb , the proof  

is made anologously to the above.  The proof of  Theorem 1.3 is completed. 
             Proof of Theorem 1.4. By [20] the inequality 
                                           
  ( )( ) ( ) ( ), 38 ,

, , , (2.11)
M

k
M n n L T

U f f c U f fω ω
δΩ − ≤ ⋅ −    

holds. 
          Let ( ) 11nδ −≥ + . Using Theorem 1.3 and (2.11) we have  
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( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )

, , , ,

, 39 ,
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, , , ,
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1, , , . (2.12)
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δ δ δ
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δ δ

Ω ≤ Ω +Ω ⋅ −

≤ Ω + ⋅ −

 ≤ Ω + Ω ≤ Ω + 

 

            Now we suppose that ( ) 11nδ −< + . Then by virtue of  [16] and [18] we 
obtain 

                           

( )( ) ( ) ( )
( )

( )
( )

( )

( ) ( ) ( )

, 42 ,

43 44 ,,

45 , 46 ,

, ,

1, ,

11 , , . (2.13)
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U f c U f

c n U f c n U f
n

c n U f c f
n

ω ω

ωω

ω ω

δ δ

δ δ

δ δ

Ω ≤ ⋅

 ≤ ⋅ ≤ Ω  
 

 ≤ + Ω ≤ Ω 
 

 

Now combining (2.12) and (2.13 ) we obtain the inequality (1.5 ) of Theorem 1.3. 
             Proof of Theorem 1.5. Let ( )G,Mf L ω∈ . Then by virtue of Theorem 2.2  

the operartor ( ) ( ): , ,M MA E D E Gω ω→  is bounded one-to-one and onto and 

( )0A f f+ = . The function f  has the followinf Faber series:  

( ) ( ) ( )
0

.m m
m

f z a f zφ
∞

=
∑�  

Using Lemma 1 in [18]  we conclude that ( )0 ,Mf E D ω+ ∈ . Then  for the function 

0f
+  the Taylor  

( )
0

.m
m

m
a f w

∞

=
∑  

expansion holds. Note that ( )1
0f E D+ ∈ . Then boundary function 

( )0 ,Mf L T ω+ ∈ . By  [13, Theorem 3.4] for  the function 0f
+ we have the 

following Fourier expansion: 

( ) ( )0
0

.imw
m

m
f w a f e

∞
+

=
∑�  
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According to Therem 2.1 the linear operatör ( ) ( ): , ,M MA E D E Gω ω→  is 
bounded. Then if we consider boundedness of  the operatör 

( ) ( ): , ,M MA E D E Gω ω→  and Theorem 1.3 we have  

( ) ( )

( ) ( )( )
( )

( )
( )0

0

,

0 0 47 0 0 ,,

48 , 0 49 , ,

,

, ,

1 1, , .
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n L T

n n L TL

k k
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f U f

A f A U f c f U f

c f c f
n n

ω

ωω

ω ω

+ + + +

Γ

+
Γ

− ⋅

= − ⋅ ≤ − ⋅

   ≤ Ω = Ω   
   

 

which completes the proof of inequality (1.10) 
Remark 3.1. Let ( ),ML T ω  be the weighted Orlicz space with Boyd indices  

0 1,M Mα β< ≤ <  and let ( ) ( )1 1
M M

A T A T
α β

ω∈ ∩ . Then by virtue of Theorem 

4 in [18] for ( ),Mf L T ω∈  the inequality  

   ( ) ( )2 2 1
, 50 0 , ,

1

1 ,
n

k k k
M mM M

m
f c n E f m E f

nω ω ω
− −

=

  Ω ≤ +  
   

∑                     (2.14) 

holds with a constant 50c  independent of n . If the summability method with the 

matrix Λ  satisfy the condition ( ),k Mb  or ( )*
,k Mb , then for ( ),Mf L T ω∈  relation 

(1.5 ) and inequality (2.14 ) immediately yield  

  ( ) ( ) ( ) ( )2 2 1
51 0 , ,,

1
,

M

n
k k

n mM ML T
m

f U f c n E f m E f
ω ωω

− −

=

 − ⋅ ≤ + 
 

∑ .          (2.15) 

The inequality (2.15) holds for Zygmund-Riesz means of order k . Note that in the 
Lebesgue space ( ) , 1pL T p< < ∞  the inequality (2.15)  was proved in [40]. 
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